Visão Geral
Curso Artificial Intelligence AI Bootcamp, As empresas que não estão olhando seriamente para a inteligência artificial (IA) podem esperar perder terreno para seus concorrentes em 2023.
O impacto da inteligência artificial nos negócios chegou ao ponto de se tornar uma ferramenta essencial – como as quatro pernas de uma cadeira.
Isso porque, quando usada adequadamente, a tecnologia de IA reduz os custos operacionais, aumenta a eficiência, aumenta a receita e melhora a experiência do cliente.
Em um estudo da Infosys , a principal força motriz para o uso da IA nos negócios foi a vantagem competitiva. Depois disso, o incentivo veio de:
- Uma decisão liderada pelo executivo
- Um problema comercial, operacional ou técnico específico
- Um experimento interno
- Demanda do cliente
- Uma solução inesperada para um problema
- Uma ramificação de outro projeto
A essência da inteligência artificial e por que ela é importante para as organizações é esta: a inteligência artificial usa uma grande quantidade de dados para identificar padrões e projeções, bem como avaliar cenários de decisão. Além disso, a tecnologia de IA está tirando a tecnologia digital da tela bidimensional e trazendo-a para o ambiente físico tridimensional que envolve um indivíduo.
Os CEOs que perceberam os benefícios da inteligência artificial tendem a vê-la como a “segunda vinda do software”. Em outras palavras, é uma forma de software que toma decisões por conta própria, podendo agir mesmo em situações não previstas pelos programadores.
Também é importante entender que o investimento em IA está crescendo. O Relatório do Índice de Inteligência Artificial de Stanford revela que o investimento privado em artificial atingiu um valor de cerca de US$ 93,5 bilhões em 2021, mais que o dobro do valor correspondente em 2020.
E cerca de dois terços da audiência de uma pesquisa da McKinsey afirmam que os investimentos de suas empresas em IA aumentarão nos próximos três anos. Essa atividade de investimento resultará inevitavelmente no surgimento e aprimoramento de novas soluções e ferramentas abrangentes e elevará o nível tecnológico geral nessa área.
As organizações precisam estar preparadas para pegar a onda.
Curso Artificial Intelligence AI Bootcamp, abrange os fundamentos de Inteligência Artificial (IA), Aprendizado de Máquina, Aprendizado Profundo, Redes Neurais, Fusão de Sensores e outros conceitos de IA. Os participantes trabalharão com ferramentas de inteligência artificial, ferramentas de programação de IA, ferramentas de ciência de dados, ferramentas de análise avançada e algoritmos e métodos de aprendizado profundo e de máquina, linguagens de programação de IA e ferramentas para projetar agentes inteligentes, algoritmos de aprendizado profundo e redes neurais.
Redes avançadas de IA são exploradas para resolver problemas de tomada de decisão em tempo real.
A disciplina de inteligência artificial (IA) abrange qualquer coisa relacionada a tornar as máquinas inteligentes relacionadas à robótica, direção autônoma, IoT ou aplicativo de software. Se você os está tornando inteligentes, então é IA.
Machine Learning (ML) é um subconjunto de IA que lida com sistemas que podem aprender sozinhos (abordamos os princípios de aprendizado supervisionado e não supervisionado neste curso). O uso de IA e sistemas de aprendizado de máquina, sistema de sistemas (SoS) e recursos mais complexos ajudam as máquinas a ficarem cada vez mais inteligentes ao longo do tempo, sem intervenção humana. Deep Learning (DL) é basicamente o mesmo que ML, mas aplicado a grandes conjuntos de dados. A maior parte do trabalho de IA agora envolve ML porque o comportamento inteligente requer conhecimento considerável, e o aprendizado é a maneira mais fácil de obter esse conhecimento.
Conteúdo Programatico
Core Concepts and Techniques behind Artificial Intelligence (AI)
- Fundamentals of Artificial Intelligence (AI)
- Introduction to Artificial Intelligence (AI)
- Applications of AI
- Fraud Detection
- Image Processing
- Computer Vision
- Robotics and Robot Motion Planning
- Network Security
- Cybersecurity Attack Detection
- Machine Learning: Supervised and Unsupervised Learning
Data Science Overview
- Data Science with Python
- Data Analytics
- Data
- Analysis
- Prediction
- Recommendation
- Building Smart Chatbots Powered by AI
Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL) and Natural Language Processing (NLP)
- Key Artificial Intelligence (AI) Principles Applied
- Broad discipline of creating intelligent machines, systems, system of systems (SoS) and intelligent capabilities
- AI-powered machines
- General and narrow intelligence AI machines
- Performing human tasks intelligently
- Machine Learning (ML)
- Systems or SoS that can learn from experience both supervised and unsupervised
- Deep Learning (DL)
- Systems that learn from experience on large data sets
- Artificial Neural Networks (ANN)
- Models of human neural networks to assist machines and computers to learn
- Natural Language Processing (NLP)
- Smart systems that can understand language
Review of AI Terminology and Principles
- Math Refresher
- Concepts of linear algebra
- Probability and statistics
- Algorithms
- Automation and iterative processes
- Scalability
- Ensemble modeling
- Framing
- Generalization
- Machine Learning methods
- Classification
- Training and Training Set
- Validation
- Representation
- Regularization
- Logistic Regressions
- Neutral Nets
- Neutral Nets
- Multi class Neutral Nets
- Embeddings
- Basic Algebra and Calculus
- Basic Python
- Chain rule
- Concept of a derivative
- Gradient or slope
- Linear algebra
- Logarithms, and logarithmic equations
- Matrix multiplication
- Mean, median, outliers and standard deviation
- Partial derivatives
- Sigmoid function
- Statistics
- Tanh
- Tensor and tensor rank
- Trigonometry
- Variables, coefficients, and functions
Applied Artificial Intelligence (AI) and Machine Learning
- Machine Learning prediction with models
- Artificial Intelligence behaving and reasoning
- Applications of Machine Learning
- Machine Learning algorithms
- Models
- Techniques
- Statistics and Math
- Algorithms
- Programming
- Patterns and Prediction
- Intelligent Behavior
- Statistics quantifies numbers
- Machine learning generalizing information from large data sets
- Principles to detect and extrapolate patterns
- Machine Learning System Analysis and Design
- Support Vector Machines
The Basics of Machine Learning
- Data and Data Science
- Machine Learning Techniques, Tools and Algorithms
- Popular Machine Learning Methods
- Supervised learning and unsupervised learning
- Supervised learning algorithms and labeled data
- Trained using labeled examples
- Classification, regression, prediction and gradient boosting
- Supervised learning and patterns
- Predicting the values of the label on additional unlabeled data
- Using historical data to predict likely future events
- Unsupervised learning and unlabeled data
- Unsupervised learning against data that has no historical labels
- Semi supervised learning
- Using both labeled and unlabeled data for training
- Classification, regression and prediction
- Reinforcement learning
- Robotics, gaming and navigation
- Discovery through trial and error
- The agent (the learner or decision maker)
- The environment (everything the agent interacts with)
- Actions (what the agent can do)
Learning Applied to AI
- Application of Supervised versus Unsupervised Learning
- Case Study: credit card transactions as fraudulent charges
- Self-organizing maps, nearest-neighbor mapping, k-means clustering and singular value decomposition
- Face recognition
Principles of Supervised Algorithms
- Classification and regression supervised learning problems
- Clustering and association unsupervised learning problems
- Algorithms used for supervised and unsupervised problems
- Supervised Machine Learning as a majority of practical machine learning
- Supervised learning problems grouping into regression and classification problems
- Principles of “Classification”
- Principles of “Regression”
- Popular examples of supervised machine learning algorithms
- Linear regression for regression problems
- Random forest for classification and regression problems
- Support vector machines for classification problems
Principles of Unsupervised Learning
- The goal for unsupervised learning
- Modeling the underlying structure or distribution in the data
- Ways to learn more about the data
- Algorithms to discover and present the interesting structure in the data
- Unsupervised learning problems grouping into clustering and association problems
- Principles of “Clustering”
- Ways to discover the inherent groupings in the data
- Principles of “Association”
- Ways to discover rules that describe large portions of your data
- Examples of unsupervised learning algorithms
- K-means for clustering problems
- Apriori algorithm for association rule learning problems
- Semi-Supervised Machine Learning
- Unlabeled data and a mixture of supervised and unsupervised techniques
- Collecting and storing unlabeled data
Principles of Neural Networks
- Neural Networks Representation
- Principles behind neural networks and models
- Neural Networks Learning
- Back propagation algorithm
- Learn parameters for a neural network
- Implementing your own neural network for credit card fraud
- Advice for Applying Machine Learning
- Best practices for applying machine learning in practice
- Best ways to evaluate performance of the learned models
Introduction to Deep Learning
- Principles of Deep Learning
- Artificial Neural Networks
- TensorFlow
- Learning complicated patterns in large amounts of data
- Identifying objects in images and words in sounds
- Automatic language translation
- Medical diagnoses
Applying AI and Machine Learning
- Applying AI and machine learning to IoT
- Financial services
- DoD
- Government
- Health care
- Marketing and sales
- Oil and gas
- Renewable Energy
- Transportation
- DoD
- Space Exploration
Overview of Algorithms
- Associations and sequence discovery
- Bayesian networks
- Decision trees
- Expectation maximization
- Gaussian mixture models
- Gradient boosting and bagging
- Kernel density estimation
- K-means clustering
- Local search optimization techniques
- Multivariate adaptive regression splines
- Nearest-neighbor mapping
- Neural networks
- Principal component analysis
- Random forests
- Self-organizing maps
- Sequential covering rule building
- Singular value decomposition
- Support vector machines
Overview of Tools and Processes
- Comprehensive data quality and management
- GUIs for building models and process flows
- Interactive data exploration
- Visualization of model results
- Comparisons of different machine learning models
- Identify the best machine learning models
- Automated ensemble model evaluation
- Repeatable and reliable results
- Integrated, end-to-end platforms to automate data-to-decision process
- Exploratory Data Analysis with R
- Loading, querying and manipulating data in R
- Cleaning raw data for modeling
- Reducing dimensions with Principal Component Analysis
- Identifying outliers in data
- Working with Unstructured Data
- Mining unstructured data
- Building and evaluating association rules
- Constructing recommendation engines
- Machine learning with neural networks
Case Studies and Workshops
- Autonomous Vehicle
- Robotics: Vision Intelligence and Machine Learning
- Robotics: Dynamics and Control
- Locomotion Engineering
- Kinematics and Mathematical Models
- Cybersecurity
- Deep Space Exploration
- Working with TensorFlow
- Creating computational graph
- Applying Artificial Neural Networks (ANN)