Curso AI and Deep Learning

  • RPA | IA | AGI | ASI | ANI | IoT | PYTHON | DEEP LEARNING

Curso AI and Deep Learning

24 horas
Visão Geral

Curso AI and Deep Learning, 

  • Tomada de decisão automatizada: os algoritmos de aprendizado de máquina podem ser usados ​​para tomar decisões e previsões automatizadas com base nos padrões ou tendências que detectam nos dados.
  • Aprendizado dinâmico: os algoritmos de aprendizado de máquina são capazes de aprender continuamente com novos dados e atualizar suas previsões à medida que novos pontos de dados são adicionados.
  • Autoaperfeiçoamento: os algoritmos de aprendizado de máquina podem ser projetados para se autoaprimorar e se otimizar ao longo do tempo.
  • Escalabilidade: os algoritmos de aprendizado de máquina podem ser dimensionados para processar grandes quantidades de dados de forma rápida e eficiente.
  • Eficiência de custo: os algoritmos de aprendizado de máquina são econômicos em comparação com os métodos tradicionais de análise de dados.
Pre-Requisitos

Não há pré-requisitos 

Materiais
Inglês + Exercícios + Lab Pratico
Conteúdo Programatico

Introduction to Data Science

  1. What is Data Science?
  2. What is Machine Learning?
  3. What is Deep Learning?
  4. What is AI?
  5. Data Analytics & it’s types

Introduction to Python

  1. What is Python?
  2. Why Python?
  3. Installing Python
  4. Python IDEs
  5. Jupyter Notebook Overview

Python Basics

  1. Python Basic Data types
  2. Lists
  3. Slicing
  4. IF statements
  5. Loops
  6. Dictionaries
  7. Tuples
  8. Functions
  9. Array
  10. Selection by position & Labels

Python Packages

  1. Pandas
  2. Numpy
  3. Sci-kit Learn
  4. Mat-plot library

Importing Data

  1. Reading CSV files
  2. Saving in Python data
  3. Loading Python data objects
  4. Writing data to csv file

Manipulating Data

  1. Selecting rows/observations
  2. Rounding Number
  3. Selecting columns/fields
  4. Merging data
  5. Data aggregation
  6. Data munging techniques

Statistics Basics

  1. Central Tendency
  2. Mean
  3. Median
  4. Mode
  5. Skewness
  6. Normal Distribution
  7. Probability Basics
  8. What does mean by probability?
  9. Types of Probability
  10. ODDS Ratio?
  11. Standard Deviation
  12. Data deviation & distribution
  13. Variance
  14. Bias variance Trade off
  15. Underfitting
  16. Overfitting
  17. Distance metrics
  18. Euclidean Distance
  19. Manhattan Distance
  20. Outlier analysis
  21. What is an Outlier?
  22. Inter Quartile Range
  23. Box & whisker plot
  24. Upper Whisker
  25. Lower Whisker
  26. Scatter plot
  27. Cook’s Distance
  28. Missing Value treatment
  29. What is a NA?
  30. Central Imputation
  31. KNN imputation
  32. Dummification
  33. Correlation
  34. Pearson correlation
  35. Positive & Negative correlation

Error Metrics

  1. Classification
  2. Confusion Matrix
  3. Precision
  4. Recall
  5. Specificity
  6. F1 Score
  7. Regression
  8. MSE
  9. RMSE
  10. MAPE

Machine Learning

  1. Supervised Learning
  2. Linear Regression
  3. Linear Equation
  4. Slope
  5. Intercept
  6. R square value
  7. Logistic regression
  8. ODDS ratio
  9. Probability of success
  10. Probability of failure Bias Variance Tradeoff
  11. ROC curve
  12. Bias Variance Tradeoff
  13. Unsupervised Learning
  14. K-Means
  15. K-Means ++
  16. Hierarchical Clustering
  17. SVM
  18. Support Vectors
  19. Hyperplanes
  20. 2-D Case
  21. Linear Hyperplane
  22. SVM Kernal
  23. Linear
  24. Radial
  25. polynomial
  26. Other Machine Learning algorithms
  27. K – Nearest Neighbour
  28. Naïve Bayes Classifier
  29. Decision Tree – CART
  30. Decision Tree – C50
  31. Random Forest

ARTIFICIAL INTELLIGENCE

  1. AI Introduction
  2. Perceptron
  3. Multi-Layer perceptron
  4. Markov Decision Process
  5. Logical Agent & First Order Logic
  6. AL Applications

Deep Learning Algorithms

  1. CNN – Convolutional Neural Network
  2. RNN – Recurrent Neural Network
  3. ANN – Artificial Neural Network
  4. Introduction to NLP
  5. Text Pre-processing
  6. Noise Removal
  7. Lexicon Normalization
  8. Lemmatization
  9. Stemming
  10. Object Standardization
  11. Text to Features (Feature Engineering)
  12. Syntactical Parsing
  13. Dependency Grammar
  14. Part of Speech Tagging
  15. Entity Parsing
  16. Named Entity Recognition
  17. Topic Modelling
  18. N-Grams
  19. TF – IDF
  20. Frequency / Density Features
  21. Word Embedding’s
  22. Tasks of NLP
  23. Text Classification
  24. Text Matching
  25. Levenshtein Distance
  26. Phonetic Matching
  27. Flexible String Matching

Design Effective Reports

  1. Enhance report design
  2. Add report objects to enhance design
  3. Format data and report objects
  4. Add a background image to a report
  5. Add row numbers to a report

Customize Reports with Conditional Formatting

  1. Create multi-lingual reports
  2. Highlight exceptional data
  3. Show and hide data
  4. Conditionally render objects in reports

Analysis Studio

  1. Analysis Studio Fundamentals
  2. Nest Data in Crosstabs in Analysis Studio
  3. Create Analysis with Multiple filter
  4. Reusable analysis
  5. Build Advanced Crosstabs in Analysis Studio
  6. Focus with Filters in Analysis Studio
  7. Creating reports from cubes
  8. Drill down and drill up

Event Studio

  1. Introduction to Event Studio
  2. Create an agent
  3. Add tasks to an agent
  4. Run an agent through its lifecycle
  5. Schedule an agent

Business Insight

  1. Introdcution to Dashboards
  2. Create Dashboard
  3. Types of Filter-Value, Slider and advanced filter
  4. Overview of RSS Feed and web Page
  5. Content Pane
  6. Create Widgets
  7. Sort, Filter and Calculate data
  8. Hands on

Business Insight Advanced

  1. Overview of Business Intelligence Advance level
  2. Create Different types of Reports
  3. Reporting Styles and filters
  4. Create dashboard objects
  5. Summarize data and Create Calculations
  6. Dispatcher and Services

Dispatcher in detail

  1. All Services
  2. Properties of Services
TENHO INTERESSE

Cursos Relacionados

Curso AI ML Toolkits with Kubeflow Foundation

24 horas

Curso Container Management with Docker

24 Horas

Curso Machine Learning Python & R In Data Science

32 Horas

Curso Docker for Developers and System Administrators

16 horas

Curso artificial inteligence AI for Everyone Foundation

16 horas

Curso IA Inteligência Artificial e Código Aberto Foundation

16 horas

Curso Artificial Intelligence with Azure

24 Horas

Curso RPA Robotic Process Automation Industria 4.0

32 horas