Curso AI and Deep Learning
24 horasVisão Geral
Curso AI and Deep Learning,
- Tomada de decisão automatizada: os algoritmos de aprendizado de máquina podem ser usados para tomar decisões e previsões automatizadas com base nos padrões ou tendências que detectam nos dados.
- Aprendizado dinâmico: os algoritmos de aprendizado de máquina são capazes de aprender continuamente com novos dados e atualizar suas previsões à medida que novos pontos de dados são adicionados.
- Autoaperfeiçoamento: os algoritmos de aprendizado de máquina podem ser projetados para se autoaprimorar e se otimizar ao longo do tempo.
- Escalabilidade: os algoritmos de aprendizado de máquina podem ser dimensionados para processar grandes quantidades de dados de forma rápida e eficiente.
- Eficiência de custo: os algoritmos de aprendizado de máquina são econômicos em comparação com os métodos tradicionais de análise de dados.
Pre-Requisitos
Não há pré-requisitos
Materiais
Inglês + Exercícios + Lab PraticoConteúdo Programatico
Introduction to Data Science
- What is Data Science?
- What is Machine Learning?
- What is Deep Learning?
- What is AI?
- Data Analytics & it’s types
Introduction to Python
- What is Python?
- Why Python?
- Installing Python
- Python IDEs
- Jupyter Notebook Overview
Python Basics
- Python Basic Data types
- Lists
- Slicing
- IF statements
- Loops
- Dictionaries
- Tuples
- Functions
- Array
- Selection by position & Labels
Python Packages
- Pandas
- Numpy
- Sci-kit Learn
- Mat-plot library
Importing Data
- Reading CSV files
- Saving in Python data
- Loading Python data objects
- Writing data to csv file
Manipulating Data
- Selecting rows/observations
- Rounding Number
- Selecting columns/fields
- Merging data
- Data aggregation
- Data munging techniques
Statistics Basics
- Central Tendency
- Mean
- Median
- Mode
- Skewness
- Normal Distribution
- Probability Basics
- What does mean by probability?
- Types of Probability
- ODDS Ratio?
- Standard Deviation
- Data deviation & distribution
- Variance
- Bias variance Trade off
- Underfitting
- Overfitting
- Distance metrics
- Euclidean Distance
- Manhattan Distance
- Outlier analysis
- What is an Outlier?
- Inter Quartile Range
- Box & whisker plot
- Upper Whisker
- Lower Whisker
- Scatter plot
- Cook’s Distance
- Missing Value treatment
- What is a NA?
- Central Imputation
- KNN imputation
- Dummification
- Correlation
- Pearson correlation
- Positive & Negative correlation
Error Metrics
- Classification
- Confusion Matrix
- Precision
- Recall
- Specificity
- F1 Score
- Regression
- MSE
- RMSE
- MAPE
Machine Learning
- Supervised Learning
- Linear Regression
- Linear Equation
- Slope
- Intercept
- R square value
- Logistic regression
- ODDS ratio
- Probability of success
- Probability of failure Bias Variance Tradeoff
- ROC curve
- Bias Variance Tradeoff
- Unsupervised Learning
- K-Means
- K-Means ++
- Hierarchical Clustering
- SVM
- Support Vectors
- Hyperplanes
- 2-D Case
- Linear Hyperplane
- SVM Kernal
- Linear
- Radial
- polynomial
- Other Machine Learning algorithms
- K – Nearest Neighbour
- Naïve Bayes Classifier
- Decision Tree – CART
- Decision Tree – C50
- Random Forest
ARTIFICIAL INTELLIGENCE
- AI Introduction
- Perceptron
- Multi-Layer perceptron
- Markov Decision Process
- Logical Agent & First Order Logic
- AL Applications
Deep Learning Algorithms
- CNN – Convolutional Neural Network
- RNN – Recurrent Neural Network
- ANN – Artificial Neural Network
- Introduction to NLP
- Text Pre-processing
- Noise Removal
- Lexicon Normalization
- Lemmatization
- Stemming
- Object Standardization
- Text to Features (Feature Engineering)
- Syntactical Parsing
- Dependency Grammar
- Part of Speech Tagging
- Entity Parsing
- Named Entity Recognition
- Topic Modelling
- N-Grams
- TF – IDF
- Frequency / Density Features
- Word Embedding’s
- Tasks of NLP
- Text Classification
- Text Matching
- Levenshtein Distance
- Phonetic Matching
- Flexible String Matching
Design Effective Reports
- Enhance report design
- Add report objects to enhance design
- Format data and report objects
- Add a background image to a report
- Add row numbers to a report
Customize Reports with Conditional Formatting
- Create multi-lingual reports
- Highlight exceptional data
- Show and hide data
- Conditionally render objects in reports
Analysis Studio
- Analysis Studio Fundamentals
- Nest Data in Crosstabs in Analysis Studio
- Create Analysis with Multiple filter
- Reusable analysis
- Build Advanced Crosstabs in Analysis Studio
- Focus with Filters in Analysis Studio
- Creating reports from cubes
- Drill down and drill up
Event Studio
- Introduction to Event Studio
- Create an agent
- Add tasks to an agent
- Run an agent through its lifecycle
- Schedule an agent
Business Insight
- Introdcution to Dashboards
- Create Dashboard
- Types of Filter-Value, Slider and advanced filter
- Overview of RSS Feed and web Page
- Content Pane
- Create Widgets
- Sort, Filter and Calculate data
- Hands on
Business Insight Advanced
- Overview of Business Intelligence Advance level
- Create Different types of Reports
- Reporting Styles and filters
- Create dashboard objects
- Summarize data and Create Calculations
- Dispatcher and Services
Dispatcher in detail
- All Services
- Properties of Services