Visão Geral
Este curso aborda os pilares essenciais para construção de agentes inteligentes avançados: memória, planejamento e uso de ferramentas. O foco está em projetar agentes capazes de manter contexto ao longo do tempo, planejar ações de forma estruturada e interagir com sistemas externos para executar tarefas complexas de maneira autônoma e controlada.
Conteúdo Programatico
Module 1 – Foundations of Intelligent Agents
- Agent lifecycle and autonomy
- From reactive to deliberative agents
- Core components of advanced agents
- Practical agent design principles
Module 2 – Memory Systems for Agents
- Short-term vs long-term memory
- Context windows and persistence
- Vector databases and embeddings
- Memory retrieval strategies
Module 3 – Knowledge and State Management
- Agent state representation
- Knowledge grounding
- Memory consistency and updates
- Avoiding context drift
Module 4 – Planning and Reasoning Mechanisms
- Planning concepts for agents
- Task decomposition
- Goal-oriented planning
- Reactive vs planned execution
Module 5 – Autonomous Planning Patterns
- ReAct and planning loops
- Tree-of-thought and variants
- Decision checkpoints
- Failure recovery strategies
Module 6 – Tool Use and Action Execution
- Tool calling fundamentals
- API and system integration
- Function execution patterns
- Validation and error handling
Module 7 – Combining Memory, Planning and Tools
- End-to-end agent workflows
- Context-aware planning
- Tool selection strategies
- Multi-step task execution
Module 8 – Control, Safety and Best Practices
- Guardrails and constraints
- Limiting autonomy and scope
- Observability and logging
- Responsible deployment of advanced agents