Visão Geral
Este curso apresenta os fundamentos dos agentes autônomos baseados em Inteligência Artificial, abordando conceitos, arquiteturas e comportamentos que permitem a tomada de decisão automática em ambientes dinâmicos. O foco está na compreensão de como agentes percebem, decidem e agem, integrando IA, automação e sistemas inteligentes.
Conteúdo Programatico
Module 1 – Introduction to Autonomous Agents
- Definition of intelligent agents
- History and evolution of agent-based systems
- Agents vs traditional software
- Real-world applications
Module 2 – Agent Environments
- Environment types (static, dynamic, deterministic)
- Fully vs partially observable environments
- Discrete and continuous environments
- Agent-environment interaction
Module 3 – Agent Architectures
- Simple reflex agents
- Model-based agents
- Goal-based and utility-based agents
- Hybrid agent architectures
Module 4 – Perception and Decision Making
- Sensors and perception models
- State representation
- Decision-making processes
- Action selection strategies
Module 5 – Planning and Reasoning
- Search and planning basics
- Problem formulation
- Deterministic planning
- Reactive vs deliberative agents
Module 6 – Learning and Adaptation
- Learning agents concepts
- Reinforcement learning overview
- Feedback and reward systems
- Adaptation and improvement
Module 7 – Multi-Agent Systems Fundamentals
- Single-agent vs multi-agent systems
- Cooperation and competition
- Communication between agents
- Coordination challenges
Module 8 – Ethics, Limitations and Future Trends
- Autonomy and responsibility
- Bias and safety concerns
- Limitations of autonomous agents
- Future of agent-based AI systems