Visão Geral
Este Curso Advanced Python Automation, ensina aos desenvolvedores as principais habilidades do Python para escrever quase qualquer script de automação e executá-lo em distribuição. Os participantes aprendem como aplicar conteinerização com Docker, acessar dados de banco de dados com Python, enviar mensagens com Python e RabbitMQ, orquestrar tarefas distribuídas com Celery e executar comandos SSH remotos.
Objetivo
Após realizare este Curso Advanced Python Automation você será capaz de:
- Implante tarefas em escala com o Celery
- Empregue Python e Celery em um ambiente em contêiner
- Use o banco de dados PostgreSQL com Python
- Envie mensagens com Python e RabbitMQ
- Aplique habilidades básicas e mais avançadas de Python Celery
Pre-Requisitos
- Todos os alunos participantes deste curso, devem ter feito o Curso Python Task Automation ou ter experiência significativa com os tópicos abordados nesse curso
Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico
Introduction
Development Environment (Very Quick Overview)
- Configure VS Code for Python script development
- Code Reformatting with Black
- Debugging Python Scripts with VS Code
Simple Task Distribution
- Use SSH to run Remote Commands
- Use SSH to Download/Upload Files
- Write Python Scripts to run code on remote Linux Computers
- Collect Data from remote Linux Computers
Containerization
- What is a Container?
- What is Docker?
- What is Docker Hub?
- Images and Containers
- Create an Image with Dockerfile
- Run Containers
- Configure Containers with Environment Variables
- Docker Compose
- Docker Compose Networking
- Docker Compose Volume
Remote Data Storage
- What is Remote Data Storage?
- Running a Data Storage in a Container
- Running PostgreSQL in a Container
- Running PostgreSQL Client Tool in a Container
- Configure with Docker Compose
- Read/Write Data to PostgreSQL with Python SQLAlchemy
Remote Message Broker
- What is a Message Broker?
- Running a Message Broker in a Container
- Running RabbitMQ in a Container
- Running RabbitMQ Client Tool in a Container
- Configure with Docker Compose
- Read/Write Data to RabbitMQ with Python and Pika
Task Automation at Scale with Celery
- Overview of Celery and its features
- Installing Celery and its dependencies
- Setting up a simple Celery project
Celery Basics
- Defining and running tasks
- Task decorators and options
- Passing arguments and results between tasks
- Task retries and error handling
- Monitoring and managing Celery workers
Advanced Celery Concepts
- Task serialization and message brokers
- Task routing and prioritization
- Task result backends
- Grouping and chaining tasks
- Scheduling periodic tasks with Celery beat
Scaling and Deployment
- Load balancing tasks with multiple workers
- Deploying Celery in a production environment
- Configuring Celery for high availability
- Best practices for handling long-running tasks
- Monitoring and performance tuning
TENHO INTERESSE