Visão Geral
Este Apache Flink + Apache Kafka apresenta, na prática, como integrar Apache Flink e Apache Kafka para construir pipelines de dados robustos, escaláveis e em tempo real. Você aprenderá a criar aplicações de streaming completas, desde a produção e consumo de eventos no Kafka até o processamento avançado no Flink, incluindo estratégias de tolerância a falhas, integração com APIs modernas e deploy em ambientes distribuídos.
Conteúdo Programatico
Module 1 – Foundations of Event Streaming
-
Introduction to streaming ecosystems
- Real-time vs batch comparisons
- Role of Flink and Kafka in modern architectures
Module 2 – Apache Kafka Essentials
-
Brokers, partitions, replicas
- Producers and consumers
- Topic configuration best practices
- Delivery guarantees (at-least, at-most, exactly-once)
Module 3 – Apache Flink Essentials
-
Flink runtime overview
- DataStream API
- Time semantics (event-time, ingestion-time, processing-time)
- Stateful operators
Module 4 – Flink + Kafka Integration
-
Kafka connectors for Flink
- Source and sink configuration
- Consuming streams with schema registry
- Writing back results to Kafka topics
Module 5 – Transformations & Stream Processing
- Mapping, filtering, windowing
- Joins, aggregations, event-time processing
- Handling late data
- Designing resilient event pipelines
Module 6 – Exactly-Once Processing
- Checkpoints and savepoints
- Transactional sinks
- Idempotent writes
- Ensuring consistency across distributed systems
Module 7 – Real-World Architectures
- CDC (Change Data Capture) with Debezium
- Combining Flink, Kafka, and OLAP systems
- Event-driven microservices
- Data quality patterns
Module 8 – Monitoring & Observability
- Kafka monitoring fundamentals
- Flink Dashboard
- Metrics, logs, and tracing
- Detecting bottlenecks and backpressure
Module 9 – Deployment Scenarios
- Standalone, YARN, Kubernetes modes
- Kafka + Flink in container environments
- CI/CD pipelines for streaming jobs
Module 10 – Hands-On Project
- Building an end-to-end real-time pipeline
- Ingesting events with Kafka
- Processing with Flink
- Producing enriched data to downstream systems