Visão Geral
O curso Advanced Hands-On Generative AI Workshop From Concept to Product é um workshop avançado e prático focado no desenvolvimento de soluções reais de Inteligência Artificial Generativa. O participante aprenderá a projetar, desenvolver, avaliar e colocar em produção aplicações baseadas em modelos generativos, cobrindo todo o ciclo de vida do produto, desde a concepção da ideia até a entrega de soluções escaláveis, seguras e prontas para uso corporativo.
Conteúdo Programatico
Module 1: Generative AI Foundations
- What is Generative AI
- Generative AI Use Cases
- Large Language Models Overview
- Diffusion and Multimodal Models
- Foundation Models and Model Families
- From Concept to Product Mindset
Module 2: Working with Large Language Models
- LLM Architecture Overview
- Tokens, Context Windows, and Embeddings
- Inference vs Training
- Hosted Models vs Open-Source Models
- Model Selection Strategies
- Hands-On: Running Your First LLM
Module 3: Prompt Engineering and Optimization
- Prompt Engineering Fundamentals
- Zero-Shot, One-Shot, and Few-Shot Prompting
- Chain-of-Thought and Reasoning Patterns
- Prompt Templates and Versioning
- Prompt Evaluation Techniques
- Hands-On: Prompt Optimization Lab
Module 4: Retrieval-Augmented Generation (RAG)
- RAG Architecture Overview
- Vector Embeddings
- Vector Databases
- Document Ingestion Pipelines
- Chunking and Indexing Strategies
- Hands-On: Building a RAG Application
Module 5: Fine-Tuning and Model Customization
- When to Fine-Tune Models
- Supervised Fine-Tuning Concepts
- Parameter-Efficient Fine-Tuning (PEFT)
- Evaluation of Fine-Tuned Models
- Cost and Performance Trade-Offs
- Hands-On: Fine-Tuning a Generative Model
Module 6: Building End-to-End Generative AI Applications
- Application Architectures for GenAI
- Backend Integration with APIs
- Frontend Integration Concepts
- Orchestrating Multi-Step GenAI Workflows
- Handling Errors and Hallucinations
- Hands-On: Building a GenAI Product Prototype
Module 7: MLOps and LLMOps for Generative AI
- LLMOps Fundamentals
- Versioning Models, Prompts, and Data
- CI/CD for Generative AI
- Deployment Strategies
- Monitoring, Logging, and Feedback Loops
- Hands-On: Deploying a GenAI Application
Module 8: Security, Ethics, and Governance
- Security Risks in Generative AI
- Data Privacy and Compliance
- Responsible AI Principles
- Guardrails and Content Filtering
- Cost Control and Usage Monitoring
- Enterprise Governance for GenAI
Module 9: From Prototype to Production
- Scaling Generative AI Applications
- Performance Optimization
- Cost Optimization Strategies
- Measuring Business Value
- Productization Best Practices
- Final Project: From Concept to Product