Curso Predictive Analytics Essential Data Mining

  • Tableau Data Visualization

Curso Predictive Analytics Essential Data Mining

16 horas
Visão Geral

Curso Predictive Analytics Essential Data Mining

  • apresentando a você as principais definições e processos que você precisará para concluir com sucesso o curso
  • orienta você no processo de definição do problema que sua análise preditiva deve abordar e, em seguida, concentra-se em como garantir que você atenda aos requisitos de dados e como uma boa preparação de dados melhora seus projetos de mineração de dados.
  • mergulha nos conjuntos de habilidades e recursos que você precisará, bem como os problemas que você enfrentará
  • percorre as etapas para determinar a solução e colocá-la em uso com probabilidades, propensões, dados ausentes, metamodelagem e muito mais.
Materiais
Português/Inglês + Exercícios + Lab Pratico
Conteúdo Programatico

What Is Data Mining and Predictive Analytics?

  • Introducing the essential elements
  • Defining data mining
  • Introducing CRISP-DM

Problem Definition

  • Beginning with a solid first step: Problem definition
  • Framing the problem in terms of a micro-decision
  • Why every model needs an effective intervention strategy
  • Evaluate a project's potential with business metrics and ROI
  • Translating business problems into data mining problems

Data Requirements

  • Understanding data requirements
  • Gathering historical data
  • Meeting the flat file requirement
  • Determining your target variable
  • Selecting relevant data
  • Hints on effective data integration
  • Understanding feature engineering
  • Developing your craft

Resources You Will Need

  • Skill sets and resources that you'll need
  • Compare machine learning and statistics
  • Assessing team requirements
  • Budgeting sufficient time
  • Working with subject matter experts

Problems You Will Face

  • Anticipating project challenges
  • Addressing missing data
  • Addressing organizational resistance
  • Addressing models that degrade

Finding the Solution

  • Preparing for the modeling phase tasks
  • Searching for optimal solutions
  • Seeking surprise results
  • Establishing proof that the model works
  • Embracing a trial and error approach

Putting the Solution to Work

  • Preparing for the deployment phase
  • Using probabilities and propensities
  • Understanding meta modeling
  • Understanding reproducibility
  • Preparing for model deployment
  • How to approach project documentation

The Nine Laws of Data Mining

  • CRISP-DM and the laws of data mining
  • Understanding CRISP-DM
  • Advice for using CRISP-DM
  • Understanding the nine laws of data mining
  • Understanding the first and second laws
  • Understanding the data preparation law
  • Understanding the laws about patterns
  • Understanding the insight and prediction laws
  • Understanding the value law
  • Understanding why models change
TENHO INTERESSE

Cursos Relacionados

Curso Análise de Dados Com o Power BI - 20778B

24 horas

Curso Análise de dados Excel Com Power BI - 20779B

16 horas

Curso Talend Data Integration Foundation

16 horas

Curso Talend Data Integration Advanced

16 horas

Curso Advanced Data Analysis and Dashboard Reporting

28 horas