Visão Geral
Este Curso OrientDB for Data Scientists é voltado para cientistas de dados que desejam utilizar o OrientDB para gerenciar e analisar dados complexos. O OrientDB é um banco de dados multimodelo que combina as funcionalidades de grafos, documentos, chave-valor e objetos, tornando-o ideal para projetos de ciência de dados que exigem flexibilidade e escalabilidade. Os alunos aprenderão a modelar dados, realizar consultas avançadas, integrar machine learning, e aplicar técnicas de visualização, tudo utilizando o OrientDB.
Conteúdo Programatico
Introduction to OrientDB for Data Science
- Overview of OrientDB as a multimodel database for data science applications.
- Key features for data scientists: graph, document, key-value, and object models.
- Advantages of using OrientDB in data science workflows.
Data Modeling with OrientDB
- Designing data models in OrientDB for structured and unstructured data.
- Multimodel database design principles for data science.
- Best practices for modeling data using graphs and documents.
Data Ingestion and Integration
- Importing and integrating data from various sources into OrientDB.
- Using ETL (Extract, Transform, Load) processes with OrientDB.
- Connecting OrientDB with data pipelines and big data platforms.
Graph Analytics with OrientDB
- Introduction to graph theory and its applications in data science.
- Performing graph-based analysis and querying with OrientDB.
- Use cases: social network analysis, recommendation systems, fraud detection.
Advanced Querying in OrientDB
- Querying large datasets using SQL and OrientDB’s native query language.
- Executing complex queries on graph and document data.
- Optimizing queries for performance in data science applications.
Machine Learning with OrientDB
- Integrating OrientDB with machine learning frameworks and libraries.
- Using graph-based features in machine learning models.
- Practical examples of machine learning workflows with OrientDB.
Data Visualization and Reporting
- Visualizing graph and document data from OrientDB.
- Tools and libraries for data visualization.
- Generating insights and reports from OrientDB data.
Performance Tuning and Optimization
- Best practices for optimizing OrientDB for data science tasks.
- Indexing and caching strategies for large datasets.
- Monitoring and scaling OrientDB for big data workloads.
Case Studies and Practical Applications
- Real-world use cases of OrientDB in data science.
- Building a complete data science project using OrientDB.
- Analyzing the performance and scalability of OrientDB in data-driven environments.