Curso Microsoft Azure Enterprise Data Analyst

  • Microsoft Azure Cloud Platform

Curso Microsoft Azure Enterprise Data Analyst

24 horas
Visão Geral

Este Crso Microsoft Azure Enterprise Data Analyst, abrange métodos e práticas para realizar análises avançadas de dados em escala. Os alunos aproveitarão a experiência de análise existente e aprenderão a implementar e gerenciar um ambiente de análise de dados, consultar e transformar dados, implementar e gerenciar modelos de dados e explorar e visualizar dados. Neste curso, os alunos usarão o Microsoft Purview, o Azure Synapse Analytics e o Power BI para criar soluções de análise.

  • Introdução à análise de dados no Azure
  • Governar dados em uma empresa
  • Modele, consulte e explore dados no Azure Synapse
  • Preparar dados para modelos tabulares no Power BI
  • Projete e crie modelos tabulares escaláveis
  • Otimize modelos tabulares em escala empresarial
  • Implemente técnicas avançadas de visualização de dados usando o Power BI
  • Implemente e gerencie um ambiente de análise
  • Gerencie o ciclo de vida de desenvolvimento de análises
  • Integre uma plataforma de análise em uma infraestrutura de TI existente
Objetivo

Após Realizar est Curso Microsoft Azure Enterprise Data Analyst, você será capaz de:

  • Implemente e gerencie um ambiente de análise de dados
  • Consultar e transformar dados
  • Implementar e gerenciar modelos de dados
  • Explorar e visualizar dados
Publico Alvo

Os candidatos a este curso devem ter experiência no assunto em projetar, criar e implantar soluções de análise de dados em escala empresarial. Especificamente, os candidatos devem ter habilidades avançadas de Power BI, incluindo gerenciamento de repositórios de dados e processamento de dados na nuvem e no local, juntamente com o uso de Power Query e expressões de análise de dados (DAX). Eles também devem ser proficientes no consumo de dados do Azure Synapse Analytics e devem ter experiência em consultar bancos de dados relacionais, analisar dados usando Transact-SQL (T-SQL) e visualizar dados.

Pre-Requisitos

Antes de frequentar este curso, é recomendado que os alunos tenham:

  • Um conhecimento básico dos principais conceitos de dados e como eles são implementados usando os serviços de dados do Azure. Para obter mais informações, consulte ms-mcadf.
  • Experimente projetar e construir modelos de dados escalonáveis, limpar e transformar dados e habilitar recursos analíticos avançados que fornecem valor comercial significativo usando o Microsoft Power BI. Para obter mais informações, consulte ms-mcdaa.
Conteúdo Programatico

Module 1: Introduction to data analytics on Azure

This module explores key concepts of data analytics, including types of analytics, data, and storage. Students will explore the analytics process and tools used to discover insights and learn about the responsibilities of an enterprise data analyst and what tools are available to build scalable solutions.

Lessons

  • Explore Azure data services for modern analytics
  • Understand concepts of data analytics
  • Explore data analytics at scale

After completing this module, students will be able to:

  • Describe types of data analytics
  • Understand the data analytics process
  • Define data job roles in analytics
  • Understand tools for scaling analytics solutions

Module 2: Govern data across an enterprise

This module explores the role of an enterprise data analyst in organizational data governance. Students will explore the use of Microsoft Purview to register and catalog data assets, to discover trusted assets for reporting, and to scan a Power BI environment.

Lessons

  • Introduction to Microsoft Purview
  • Discover trusted data using Microsoft Purview
  • Catalog data artifacts by using Microsoft Purview
  • Manage Power BI artifacts by using Microsoft Purview

After completing this module, students will be able to:

  • Browse, search, and manage data catalog assets.
  • Use data catalog assets with Power BI.
  • Use Microsoft Purview in Azure Synapse Studio.
  • Register and scan a Power BI environment using Microsoft Purview.

Module 3: Model, query, and explore data in Azure Synapse

This module explores the use of Azure Synapse Analytics for exploratory data analysis. Students will explore the capabilities of Azure Synapse Analytics including the basics of data warehouse design, querying data using T-SQL, and exploring data using Spark notebooks.

Lessons

  • Introduction to Azure Synapse Analytics
  • Implement star schema design and query relational data in Azure
  • Analyze data with a serverless SQL pool in Azure Synapse Analytics
  • Optimize data warehouse query design
  • Analyze data with a Spark Pool in Azure Synapse Analytics
  • Lab: Query data in Azure
  • Lab: Explore data in Spark notebooks
  • Lab: Create a star schema model

After completing this module, students will be able to:

  • Understand when to use Azure Synapse Analytics in reporting solutions.
  • Query data with SQL.
  • Query data with Spark.

Module 4: Prepare data for tabular models in Power BI

This module explores the fundamental elements of preparing data for scalable analytics solutions using Power BI. Students will explore model frameworks, considerations for building data models that will scale, Power Query optimization techniques, and the implementation of Power BI dataflows.

Lessons

  • Choose a Power BI model framework
  • Understand scalability in Power BI
  • Optimize Power Query for scalable solutions
  • Create and manage scalable Power BI dataflows
  • Lab: Create a dataflow

After completing this module, students will be able to:

  • Choose an appropriate Power BI model framework.

Module 5: Design and build scalable tabular models

This module explores the critical underlying aspects of tabular modeling for building Power BI models that can scale. Students will learn about model relationships and model security, working with direct query, and using calculation groups.

Lessons

  • Create Power BI model relationships
  • Enforce model security
  • Implement DirectQuery
  • Create calculation groups
  • Lab: Create model relationships
  • Lab: Enforce model security
  • Lab: Design and build tabular models
  • Lab: Create calculation groups

After completing this module, students will be able to:

Module 6: Optimize enterprise-scale tabular models

This module covers key aspects of performance optimization using large-format data. Students will explore optimization using Synapse, Power BI, and external tools.

Lessons

  • Optimize performance using Synapse and Power BI
  • Improve query performance with hybrid tables, dual storage mode, and aggregations
  • Use tools to optimize Power BI performance
  • Lab: Use tools to optimize Power BI performance
  • Lab: Improve query performance using aggregations
  • Lab: Improve query performance with dual storage mode
  • Lab: Improve performance with hybrid tables

After completing this module, students will be able to:

Module 7: Implement advanced data visualization techniques by using Power BI

This module explores data visualization concepts including accessibility, customization of core data models, real-time data visualization, and paginated reporting.

Lessons

  • Understand advanced data visualization concepts
  • Customize core data models
  • Monitor data in real-time with Power BI
  • Create and distribute paginated reports in Power BI report builder
  • Lab: Monitor data in real-time with Power BI
  • Lab: Create and distribute paginated reports in Power BI Report Builder

After completing this module, students will be able to:

Module 8: Implement and manage an analytics environment

This module explores key considerations for implementing and managing Power BI. Students will understand key recommendations for administration and monitoring of Power BI, including configuration and management of Power BI capacity.

Lessons

  • Recommend Power BI administration settings
  • Recommend a monitoring and auditing solution for a data analytics environment
  • Configure and manage Power BI capacity
  • Establish a data access infrastructure in Power BI

After completing this module, students will be able to:

Module 9: Manage the analytics development lifecycle

This module explores considerations for deployment, source control, and application lifecycle management of analytics solutions. Students will understand what to recommend and will be able to deploy and manage automated and reusable Power BI assets.

Lessons

  • Recommend a deployment strategy for Power BI assets
  • Recommend a source control strategy for Power BI assets
  • Perform impact analysis of downstream dependencies from dataflows and datasets
  • Recommend automation solutions for the analytics development lifecycle, including Power BI REST API
  • Deploy and manage datasets by using the XMLA endpoint
  • Deploy reusable assets
  • Lab: Create reusable Power BI assets

After completing this module, students will be able to:

Module 10: Integrate an analytics platform into an existing IT infrastructure

This module explores the integration of a Power BI analytics solution into existing Azure infrastructure. Students will understand Power BI tenant and workspace configurations, along with considerations for Power BI deployment in an organization.

Lessons

  • Recommend and configure a Power BI tenant or workspace
  • Identify requirements for a solution, including features, performance, and licensing strategy
  • Integrate an existing Power BI workspace into Azure Synapse Analytics
TENHO INTERESSE

Cursos Relacionados

Curso Azure Microsoft Introdução para profissionais de TI

16 horas

CURSO AZURE MICROSOFT FUNDAMENTOS

8 horas

Curso Azure Development Foudation

16 horas

Curso Azure Kubernetes Services AKS

24 Horas

Curso DP-300T00-A Administering Relational Databases on Microsoft Azure

32 horas

Curso AZ-103T00-A: Microsoft Azure Administrator

32 horas

Curso MS-500T01-A: Managing Microsoft 365 Identity and Access

8 Horas

Curso MS-101T01-A: Microsoft 365 Security Management

8 Horas