Curso Introduction to DAX

  • Tableau Data Visualization

Curso Introduction to DAX

24 horas
Visão Geral

Este Curso Introduction to DAX é oferecido como uma sala de aula presencial ou entrega virtual, e pode ser adaptado às suas necessidades usando seus próprios conjuntos de dados. DAX, Data Analysis Expressions, é a linguagem nativa do Power BI, Power Pivot para Excel e modelos tabulares SSAS no Microsoft SQL Server Analysis Services. Este Curso Introduction to DAX é voltado para usuários do Power BI, Power Pivot e desenvolvedores do Analysis Services que desejam aprender e dominar a linguagem DAX. Neste curso,

Pre-Requisitos
  • Você deve ser um usuário competente do Microsoft Excel. Você não precisa de nenhuma experiência no uso do DAX, mas recomendamos que você participe do nosso curso de 3 dias do Microsoft Power BI antes de fazer este curso.
Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico

What is DAX?

  1.  The data model
  2.  The direction of a relationship
  3.  DAX for Excel users
  4.  Cells versus tables
  5.  Excel and DAX: Two functional languages
  6.  Using iterators
  7.  DAX requires some theory
  8.  DAX for SQL developers
  9.  Relationship handling
  10.  DAX is a functional language
  11.  DAX as a programming and querying language
  12.  Subqueries and conditions in DAX and SQL
  13.  Multidimensional vs. Tabular
  14.  Hierarchies
  15.  Leaf-level calculations

Introducing DAX

  1.  DAX calculations
  2.  DAX data types
  3.  DAX operators
  4.  Calculated columns
  5.  Measures
  6.  Variables
  7.  Handling errors in DAX expressions
  8.  Formatting DAX code
  9.  Common DAX functions
  10.  Aggregate functions
  11.  Logical functions
  12.  Information functions
  13.  Mathematical functions
  14.  Trigonometric functions
  15.  Text functions
  16.  Conversion functions
  17.  Date and time functions
  18.  Relational functions
  19.  Using basic table functions
  20.  Introducing table functions
  21.  EVALUATE syntax
  22.  Using table expressions
  23.  FILTER
  24.  ALL, ALLEXCEPT, and ALLNOBLANKROW
  25.  VALUES and DISTINCT
  26.  Using VALUES as a scalar value

Evaluation contexts

  1.  Introduction to evaluation contexts
  2.  The row context
  3.  Testing your evaluation context understanding
  4.  Using SUM in a calculated column
  5.  Using columns in a measure
  6.  Creating a row context with iterators
  7.  Using the EARLIER function
  8.  FILTER, ALL, and context interactions
  9.  Working with many tables
  10.  Row contexts and relationships
  11.  Filter context and relationships
  12.  Introducing VALUES
  13.  Introducing ISFILTERED, ISCROSSFILTERED
  14.  Evaluation contexts recap
  15.  Creating a parameter table

CALCULATE and CALCULATETABLE

  1.  CALCULATE
  2.  The filter context
  3.  Introducing CALCULATE
  4.  Filtering a single column
  5.  Filtering with complex conditions
  6.  Using CALCULATETABLE
  7.  Context transition
  8.  Context transition with measures
  9.  How many rows are visible after context transition?
  10.  Evaluation order of context transition
  11.  Variables and evaluation contexts
  12.  Circular dependencies
  13.  CALCULATE rules
  14.  Introducing ALLSELECTED
  15.  USERELATIONSHIP

DAX Examples

  1.  Computing ratios and percentages
  2.  Computing cumulative totals
  3.  Using ABC (Pareto) classification
  4.  Computing sales per day and working day
  5.  Computing differences in working days
  6.  Computing static moving averages

Time intelligence calculations

  1.  Introduction to time intelligence
  2.  Building a Date table
  3.  Using CALENDAR and CALENDARAUTO
  4.  Working with multiple dates
  5.  Handling multiple relationships to the Date table
  6.  Handling multiple Date tables
  7.  Introduction to time intelligence
  8.  Using Mark as Date Table
  9.  Aggregating and comparing over time
  10.  Year-to-date, quarter-to-date, month-to-date
  11.  Computing periods from prior periods
  12.  Computing difference over previous periods
  13.  Computing the moving annual total
  14.  Closing balance over time
  15.  Semi-additive measures
  16.  OPENINGBALANCE and CLOSINGBALANCE functions
  17.  Advanced time intelligence
  18.  Periods to date
  19.  DATEADD
  20.  FIRSTDATE and LASTDATE
  21.  FIRSTNONBLANK and LASTNONBLANK
  22.  Using drillthrough with time intelligence
  23.  Custom calendars
  24.  Working with weeks
  25.  Custom year-to-date, quarter-to-date, month-to-date
  26.  Computing over noncontiguous periods
  27.  Custom comparison between periods

Statistical functions

  1.  Using RANKX
  2.  Common pitfalls using RANKX
  3.  Using RANK.EQ
  4.  Computing average and moving average
  5.  Computing variance and standard deviation
  6.  Computing median and percentiles
  7.  Computing interests
  8.  Alternative implementation of PRODUCT and GEOMEAN
  9.  Using internal rate of return (XIRR)
  10.  Using net present value (XNPV)
  11.  Using Excel statistical functions
  12.  Sampling by using the SAMPLE function
  13.  Advanced table functions
  14.  EVALUATE
  15.  Filter functions
  16.  Projection functions
  17.  Lineage and relationships
  18.  Grouping/joining functions
  19.  Set functions
  20.  Utility functions

Advanced evaluation context

  1.  ALLSELECTED
  2.  KEEPFILTERS
  3.  AutoExists
  4.  Expanded tables
  5.  Difference between table expansion and filtering
  6.  Redefining the filter context
  7.  Filter context intersection
  8.  Filter context overwrite
  9.  Arbitrarily shaped filters
  10.  The ALL function
  11.  Lineage
  12.  Using advanced SetFilter
  13.  Learning and mastering evaluation contexts

Handling hierarchies

  1.  Computing percentages over hierarchies
  2.  Handling parent-child hierarchies
  3.  Handling unary operators
  4.  Implementing unary operators by using DAX

Advanced relationships

  1.  Using calculated physical relationships
  2.  Computing multiple-column relationships
  3.  Computing static segmentation
  4.  Using virtual relationships
  5.  Using dynamic segmentation
  6.  Many-to-many relationships
  7.  Using relationships with different granularities
  8.  Differences between physical and virtual relationships
  9.  Finding missing relationships
  10.  Computing number of products not sold
  11.  Computing new and returning customers
  12.  Examples of complex relationships
  13.  Performing currency conversion
  14.  Frequent itemset search

The VertiPaq engine

  1.  Database processing
  2.  Introduction to columnar databases
  3.  VertiPaq compression
  4.  Value encoding
  5.  Dictionary encoding
  6.  Run Length Encoding (RLE)
  7.  Re-encoding
  8.  Finding the best sort order
  9.  Hierarchies and relationships
  10.  Segmentation and partitioning
  11.  Materialization
  12.  Choosing hardware for VertiPaq
  13.  Can you choose hardware?
  14.  Set hardware priorities
  15.  CPU model
  16.  Memory speed
  17.  Number of cores
  18.  Memory size
  19.  Disk I/O and paging

Optimizing data models

  1.  Gathering information about the data model
  2.  Denormalization
  3.  Columns cardinality
  4.  Handling date and time
  5.  Calculated columns
  6.  Optimizing complex filters with Boolean calculated columns
  7.  Choosing the right columns to store
  8.  Optimizing column storage
  9.  Column split optimization
  10.  Optimizing high cardinality columns
  11.  Optimizing drill-through attributes

Analyzing DAX query plans

  1.  Introducing the DAX query engine
  2.  The formula engine
  3.  The storage engine (VertiPaq)
  4.  Introducing DAX query plans
  5.  Logical query plan
  6.  Physical query plan
  7.  Storage engine query
  8.  Capturing profiling information
  9.  Using the SQL Server Profiler
  10.  Using DAX Studio
  11.  Reading storage engine queries
  12.  Introducing xmSQL syntax
  13.  Scan time
  14.  DISTINCTCOUNT internals
  15.  Parallelism and datacache
  16.  The VertiPaq cache
  17.  CallbackDataID
  18.  Reading query plans

Optimizing DAX

  1.  Defining optimization strategy
  2.  Identifying a single DAX expression to optimize
  3.  Creating a reproduction query
  4.  Analyzing server timings and query plan information
  5.  Identifying bottlenecks in the storage engine or formula engine
  6.  Optimizing bottlenecks in the storage engine
  7.  Choosing ADDCOLUMNS vs. SUMMARIZE
  8.  Reducing CallbackDataID impact
  9.  Optimizing filter conditions
  10.  Optimizing IF conditions
  11.  Optimizing cardinality
  12.  Optimizing nested iterators
  13.  Optimizing bottlenecks in the formula engine
  14.  Creating repro in MDX
  15.  Reducing materialization
  16.  Optimizing complex bottlenecks
TENHO INTERESSE

Cursos Relacionados

Curso Análise de Dados Com o Power BI - 20778B

24 horas

Curso Análise de dados Excel Com Power BI - 20779B

16 horas

Curso Talend Data Integration Foundation

16 horas

Curso Talend Data Integration Advanced

16 horas

Curso Advanced Data Analysis and Dashboard Reporting

28 horas