Curso Introduction to Data Governance and Assessing Data Maturity
24 horasVisão Geral
Este Curso Introduction to Data Governance and Assessing Data Maturity, ajuda você a entender a Governança de Dados e avaliar sua Maturidade de Dados. Ele usa os padrões de governança de dados IEC/ISO 38505, escritos para organizações que desejam desenvolver e implementar uma estratégia de dados. Por exemplo, essa estratégia pode ser parte de um plano para fornecer novos serviços ou produtos aos seus clientes.
Objetivo
- Aprenda as diferentes terminologias de dados: OLTP e OLAP, painéis e scorecards.
- Entenda o que são dados e o histórico dos dados.
- Aprenda sobre os diferentes níveis de maturidade de dados.
- Entenda como tomar decisões com dados, relatar os dados e distribuí-los.
- Entenda quando descartar dados e por quê.
Pre-Requisitos
- Os participantes devem ter uma compreensão básica do que são dados e da função da análise de dados.
- Introdução à Análise de Dados .
Materiais
Inglês/Português/Lab PráticoConteúdo Programatico
A World of Data
- What Is Data?
- Health and Census Data
- Traditional and Modern Data-Heavy Industries
- Data Quality Disasters
- How Good and Bad Data Impacts Your Business
- Why Poor-Quality Data Exists
- Data and the Digital Revolution
- Five Key Drivers for Data Awareness
- Causes of Poor Data Quality
- Components of a Data Solution
- Data Products: Terminology
- Data Products: OLTP and OLAP
- Data Products: Dashboards and Scorecards
- Data Products: Extract, Transform, Load, and Reporting Tools
- “Big” Data
- Data and Digital
Introducing Data Governance & Data Management
- Data Governance Or Data Management?
- Data Governance Standards
- Other Definitions of Data Governance
- Data Governance Responsibilities
- Data Management
- ISO Standards In This Course
- ISO/DIS 37000 Wheel: The Centrality Of Governance
- ISO/DIS 37000*:
- Guidance for the Governance of Organizations
- ISO/IEC 38500:2015
- Governance of IT for The Organization
- Data Governance
- The Definitions and Focus of Data Governance
- Other Definitions of Data Governance
- Six Use Cases for Data Governance
- Data Governance: Areas of Focus
- Who Manages Data Governance?
Working with Data
- Trust Issues
- Impact On Directors
- Opportunities For Data-Driven Business
- The Risk of Unintended Outcomes
- Regulation Of Data
- Maturity Assessment: Creating the Vision
- Data Maturity Levels
- Level 1: Data Aware
- Level 2: Data Capable
- Level 3: Data Adept
- Level 4: Data Informed
- Level 5: Data Pioneer
- Discussion Point: Driving Data Initiatives Forward
- What Are Business Drivers?
- Top-Down Data Analysis
- Enterprise Information Architecture
- Designing Standardized Business Metadata
- Bottom-Up Source Data Analysis
- Source Data Selection
- Data Selection Issues
- Extract, Transform, and Load (ETL)
- Examples: Specifying ETL Rules
- Data Technologies
- Enabling Technologies That Generate Data
- Moving Data to a Data Warehouse
- Developing the Data Warehouse
- Denormalization
- OLTP vs. OLAP
- OLAP Terminology
- Value of OLAP
- Identifying Enterprise Systems and Data
- How Is Enterprise Data Stored?
- Unstructured Data
- Technical Infrastructure
- Issues: Structured and Unstructured Data
Principles & Components of Data Governance
- Principles & Components of Data Governance
- The Principles of Data Governance
- Components of Data Governance
- The Data Governance Paradox
- The Data Governance Paradox: The Hidden Data Factory
- Barriers to Data Governance
- When Data Governance Fails
- Setting Governance Goals and Objectives
- Creating Your Data Governance Vision
Building a Data Strategy
- Your Key Data Challenges
- Data Management Metrics
- Business Culture
- Effective Business Communication
- Selling Data Governance
- Business Culture Change and Data Governance
- Creating a Cultural Change Plan
- Communications Strategies for a Cultural Change Plan
- Using a Motivation Model
- Using a Motivation Model
- Tools & Technology
- Building a Data Governance Business Case
- What Are Business Drivers?
- Building a Data Governance Business Case:
- Costs and Benefits
- Building a Data Governance Business Case:
- Implementation Plan
- Five Data Governance Models
- Pros & Cons of Each Model
- Using The Right Model for Your Organization
Building or Adopting a Data Governance Framework
- Data Governance Framework
- Data Governance Framework Examples: DGI
- Data Governance Framework Examples: McKinsey
- Data Governance Framework: Overview
- The Data Governance Framework: Vision
- The Data Governance Framework: Strategy
- The Data Governance Framework: Organization & People
- Implementing a Data Governance Framework
- What Does a Data Governance Framework Provide?
- The Benefits of a Data Governance Framework
- DGF Deliverables & Actions Checklist
- Data Governance Framework
Data Management Processes
- The Data Governance Roadmap
- Data Governance Capability Mapping
- The Data Governance Roadmap Checklist
- Hints & Tips for Developing Roadmaps
- Organizing Practical Data Management
- Identifying and Designing Data Management Processes
- Data Ownership & Stewardship
- What are Stakeholders?
- Types of Requirements Errors
- Why Do We Care?
- Defining Organizational Goals and Objectives
- Identifying Your Key Data
- Data Management and Measurement
- Quality Measures for Data
- Baselines and Improvement Targets
- Data Governance & Management Toolset
- Data Improvement Plans
- The Role of IT in Data Governance & Management
- Issue Logging
Data Management & Accountability
- Dealing with Connectivity
- Issues With a Connected World
- Addressing Issues with the Connected World
- Examples of Issues with the Connected World
- The Data Accountability Map
- Data Accountability
- Data Collection Governance Issues
- Collecting Data
- The Quality of Data Collected
- Storing Data
- Decide
- The Governance Of Decision Making
- Bias in the Decision-Making Process
- Automated Decision-Making
- Reporting on Data
- Strategy for Reporting on Data
- Data Classification for Reports
- Distribution of Data
- Aspects of Data Security
- Models For Data Distribution:
- Example: ENISA* Traffic Light Protocol
- Why Dispose of Data?
- Candidates For Data Disposal
- Policy For Data Disposal
- Creating Reports to Identify Disposable Data
- External Triggers For Data Disposal
- Permanent Removal
- Archiving Data
- Balancing Value, Risk, and Constraint