Curso Fundamentos de Algoritmos de Recomendação
24 horasVisão Geral
Este Curso Fundamentos de Algoritmos de Recomendação, oferece uma base sólida sobre algoritmos de recomendação, uma área essencial da Inteligência Artificial que impulsiona desde recomendações de produtos até sugestões personalizadas de conteúdo. Exploraremos os principais tipos de sistemas de recomendação – baseados em conteúdo, colaborativos e híbridos – e aprenderemos como eles são utilizados para capturar preferências e antecipar necessidades dos usuários. O Curso Fundamentos de Algoritmos de Recomendação, abrange desde os fundamentos teóricos até implementações práticas em Python, permitindo que você desenvolva, teste e ajuste algoritmos de recomendação eficazes e personalizáveis para diferentes contextos e setores.
Objetivo
Após realizar este curso de Fundamentos de Algoritmos de Recomendação, você será capaz de:
- Compreender os princípios dos principais tipos de sistemas de recomendação.
- Implementar algoritmos de recomendação em Python usando bibliotecas populares.
- Configurar recomendações baseadas em conteúdo e filtragem colaborativa.
- Explorar abordagens híbridas e modelos avançados para recomendações.
- Avaliar e otimizar algoritmos de recomendação com métricas de desempenho.
Publico Alvo
- Cientistas de dados e engenheiros de Machine Learning
- Profissionais de marketing digital e experiência do usuário
- Desenvolvedores de software que atuam com sistemas de personalização
- Estudantes e entusiastas de IA e ciência de dados
- Profissionais interessados em criar sistemas inteligentes para e-commerce, mídia e tecnologia
Pre-Requisitos
- Conhecimento básico em programação (preferencialmente Python) e fundamentos em estatística e machine learning.
Materiais
Inglês + Exercícios + Lab PraticoConteúdo Programatico
Module 1: Introduction to Recommender Systems
- Overview of recommendation systems and their importance
- Key applications across different industries
- Types of recommendation algorithms and how they differ
Module 2: Content-Based Filtering
- Fundamentals of content-based recommendation
- Feature engineering and representation of items and users
- Calculating similarity between items (Cosine, Jaccard, etc.)
- Implementing content-based filtering in Python
Module 3: Collaborative Filtering
- Introduction to collaborative filtering: user-based and item-based approaches
- Matrix factorization techniques for recommendations (e.g., SVD)
- Neighborhood-based collaborative filtering algorithms
- Implementing collaborative filtering with Python
Module 4: Hybrid Recommendation Systems
- Introduction to hybrid models and combining methods
- Benefits and challenges of hybrid recommendation systems
- Examples of hybrid techniques (weighted, switching, and mixed)
- Implementing hybrid recommendation algorithms in Python
Module 5: Implicit vs. Explicit Feedback
- Understanding user feedback types and their impact on algorithms
- Working with implicit feedback: advantages and limitations
- Designing recommendation systems that handle different feedback
Module 6: Evaluation Metrics for Recommender Systems
- Key evaluation metrics: precision, recall, F1-score, and AUC
- Ranking metrics: mean reciprocal rank, NDCG, and MAP
- Implementing evaluation functions in Python
- Interpreting results and making adjustments for better accuracy
Module 7: Advanced Techniques and Deep Learning for Recommendations
- Overview of deep learning-based recommender systems
- Neural Collaborative Filtering and Autoencoders
- Implementing deep learning recommendations with TensorFlow/PyTorch
- Exploring recent trends: transformers and embeddings in recommendations
Module 8: Case Study: Building a Recommendation System from Scratch
- Defining business goals and data collection strategies
- Preparing datasets and handling large-scale data
- Developing, testing, and deploying a full recommendation system
- Best practices for maintenance and continuous improvement
Module 9: Applications and Ethical Considerations
- Recommendation systems in e-commerce, streaming services, and social media
- Understanding bias, fairness, and privacy in recommendation systems
- Ethical considerations and responsible AI in recommendations