Visão Geral
O Curso Bayesian Inference with R ensina a abordagem bayesiana de inferência usando a linguagem R como ferramenta aplicada. Após uma rápida revisão sobre importação e gerenciamento de dados com R, bem como comandos de base R, os participantes aprenderão os fundamentos teóricos da inferência (com foco em estatísticas Bayesianas), juntamente com exemplos aplicados de abordagens Bayesianas para modelos estatísticos.
Conteúdo Programatico
Introduction to Software Environment (R and RStudio)
Review of Base R
- Data import
- Creating new variables
- Basic summaries
- Plotting with R
Probability Theory and Notation with Applied Examples
Bayesian Models Versus Traditional Models
- The difference between a frequentist approach and a Bayesian approach
- Estimating cluster offsets
- Shrinkage
Estimating a Single Parameter
- Combing the prior and observed data
- The notion of a non-informative prior
- Summarizing the posterior
- Implementing MCMC algorithms
- Diagnosing MCMC chain output
- Checking posterior output
Applied Bayesian Regression Modelling: Normal Linear Regression
- Contrasting the Bayesian approach to linear regression
- Establishing model and data matrices
- Dimensionality reduction in the context of linear modeling
- Penalized models (shrinkage)
- Appropriate priors for beta and covariance parameters
- Diagnosing MCMC chain output
- Checking posterior output
- Non-linear terms
- Seasonal terms
- Extending this framework to clustered data
- Extensions to repeated measurements
Applied Bayesian Regression Modelling: Logistic Regression
- Extending Bayesian models to binary outcomes
- Accounting for over and under dispersion in a binomial model
- Extensions to clustered data
- Extensions to repeated measurements
Applied Bayesian Regression Modelling: Time to Event Models
- Extending Bayesian approaches to proportional hazards modeling
Review of Other Software Approaches to Performing Bayesian Inference
- INLA
- WINBUGS/OPENBUGS
- JAGS
- STAN