Visão Geral
Curso Analytics for Retail Banks. "O Analytics para bancos de varejo", fornece conhecimento aprofundado sobre o ciclo de vida analítico, infraestrutura de dados, ciclo de vida do cliente e tendências digitais. Os participantes, compreenderão as aplicações analíticas em um banco de varejo. Os participantes compreenderão como os canais de entrada, saída e interativos ajudam os programas baseados em dados. Os participantes também compreenderão como gerir estes desafios e como utilizar a análise para enfrentá-los.
Publico Alvo
Este Curso Analytics for Retail Banks é destinado a todos que desejam compreender a aplicação da análise, especialmente no contexto do banco de varejo. Os profissionais abaixo podem participar deste treinamento:
- Gerentes de análise que são especialistas no assunto, liderando uma equipe de analistas
- Profissionais seniores em bancos de varejo que desejam melhorar suas perspectivas de carreira migrando para análise
- Chefes de negócios e CXOs para ajudar a compreender as aplicações de análise
Conteúdo Programatico
Analytics scope at a retail bank
- Introduction to Analytics objectives
- Analytics data stack
- Analytics lifecycle
- Analytics process cycles
- Analytics algorithms stack
- Data visualisation
- Context awareness
- Analytics best practices
- About CRISP-DM methodology
Marketing challenges across the retail banking customer lifecycle
- Retail banking objectives
- Customer lifecycle
- Analytics applications across the customer lifecycle
- Levers
- Introduction to Analytics objectives and trade-offs
- Segment marketing
- Partner agencies
- About ROI models
Data related Infrastructure at a retail bank
- About the challenges of big data
- Different types of data
- Data lifecycle Logical data models
- Data cleansing
- Unstructured data processing
- Single view of the customer
- Single row per customer
- Platform components required to process data
- Requisite processes
Channel implications on data driven marketing at retail banks
- Channel purposes
- Types of channels
- Channel infrastructure
- Channel throughput
- Campaign execution challenges
- Omni-channel perspective
- Use of social media channels
Data-driven customer acquisition at retail banks
- Prospecting
- Onboarding
- Analytics capabilities for prospect analytics
- Response models
- Activation strategies
- Digital activation best and worst practices
Data-driven usage management at retail banks
- Analytics capabilities required
- Sample usage increase programs
- Offer glut
- Offer fulfillment and tracking
Data-driven customer experience management at retail banks
- Customer journey and analytics
- Customer experience processes
- Customer trust principles
- Analytics capabilities required for customer experience and satisfaction
- Analytics for the end customer
- Personal financial management
- Technology shifts
- Design thinking
- Testing options
- Digital customer experience sensors and actuators
Data-driven upselling and Cross-selling at retail banks
- Upselling and cross-selling processes
- Tactics to increase customer penetration
- Incoming call is your best bet
Next best offer analytics,
- Case study Card upgrade program,
- Case study Cross selling credit cards to savings accounts
- Case study Cross Selling mutual funds to savings account customers
- Cross-sell between corporate and individual accounts
- Bancassurance approaches
Data driven retention and loyalty management at retail banks
- Retention and loyalty processes
- Factors affecting
- Customer loyalty
- Analytics capability for loyalty analytics
- Attrition types and retention strategies
- Case Study Attrition model
- Advocacy analytics
- Social Media Marketing
Practical Implementation challenges for the data-driven market
- McKinsey core beliefs on big data
- Data privacy
- IT principles for digital banking
- Architecture blocks for digital banking,Know your business
- Data preparation groundwork
- Analytics is more art than science
- Common improvement areas at banks