Curso Amazon Redshift Cloud Data Storage and Analysis
24 horasVisão Geral
Este Curso Amazon Redshift Cloud Data Storage and Analysis, fornece uma introdução completa ao Amazon Redshift, o serviço de data warehouse totalmente gerenciado da AWS projetado para análise de grandes volumes de dados. Com foco em entender os recursos e funcionalidades que tornam o Redshift uma solução eficiente para processamento de dados analíticos, o Curso Amazon Redshift Cloud Data Storage and Analysis, explora desde a criação e configuração de clusters até a otimização de consultas e o gerenciamento de segurança. Os participantes aprenderão a trabalhar com grandes conjuntos de dados, implementar estratégias de particionamento e otimizar o desempenho para obter insights rápidos e precisos em um ambiente de nuvem escalável.
Objetivo
Após realizar este Curso Amazon Redshift Cloud Data Storage and Analysis, você será capaz de:
- Configurar e gerenciar clusters do Amazon Redshift para armazenar e processar grandes volumes de dados.
- Otimizar consultas e gerenciar o desempenho do Redshift em ambientes de alta demanda.
- Implementar estratégias de segurança e controle de acesso para proteger dados sensíveis.
- Integrar o Redshift com outros serviços da AWS e ferramentas de BI para análise de dados.
- Monitorar, manter e escalar o Redshift para atender a demandas variáveis de carga de trabalho.
Publico Alvo
- Engenheiros de Dados e Analistas de Dados
- Arquitetos de Soluções e Administradores de Banco de Dados
- Cientistas de Dados e Desenvolvedores de BI
- Profissionais de TI interessados em processamento e análise de grandes volumes de dados na nuvem
Pre-Requisitos
- Conhecimento básico em bancos de dados relacionais e SQL
- Experiência com AWS e noções de arquitetura de nuvem
- Familiaridade com conceitos de data warehousing é recomendável
Materiais
Inglês + Exercícios + Lab PraticoConteúdo Programatico
Module 1: Introduction to Amazon Redshift
- Overview of Data Warehousing and Amazon Redshift
- Key Features and Architecture of Amazon Redshift
- Understanding Clusters, Nodes, and Slices
- Setting Up an AWS Environment for Redshift
Module 2: Creating and Configuring Redshift Clusters
- Launching and Configuring a Redshift Cluster
- Managing Nodes, Clusters, and Data Distribution
- Understanding Redshift Database Components
- Using the Redshift Console and CLI for Configuration
Module 3: Loading Data into Amazon Redshift
- Importing Data from Amazon S3 with COPY Command
- Working with Data Sources: RDS, DynamoDB, and External Databases
- Bulk Data Loading and ETL Best Practices
- Automating Data Loading and Scheduling Jobs
Module 4: Working with Redshift Tables and Queries
- Creating and Managing Tables in Redshift
- Partitioning and Sorting Data for Query Optimization
- Understanding Distribution Styles and Keys
- Advanced SQL for Data Analysis in Redshift
Module 5: Performance Optimization Techniques
- Query Tuning and Analyzing Query Plans
- Using Sort Keys and Distribution Keys Effectively
- Implementing Compression (Encoding) for Storage Optimization
- Monitoring Workloads with Redshift Console and Insights
Module 6: Security and Data Protection
- Setting Up IAM Roles and Policies for Redshift
- Implementing Encryption: SSL, KMS, and HSM
- Managing Access Control and User Permissions
- Auditing and Monitoring Security in Redshift
Module 7: Backup, Restore, and Snapshot Management
- Understanding Snapshots and Automated Backups
- Manual vs. Automated Snapshot Configuration
- Restoring Data from Snapshots and Disaster Recovery
- Configuring Retention Policies for Backups
Module 8: Integrating Redshift with AWS Ecosystem
- Connecting Redshift with Amazon S3, RDS, and DynamoDB
- Integrating with AWS Glue for ETL Processes
- Using AWS Lambda and Step Functions with Redshift
- Redshift Spectrum for Data Lakes and External Tables
Module 9: Data Visualization and BI Integration
- Integrating Redshift with Business Intelligence Tools (e.g., Tableau, QuickSight)
- Building Dashboards and Reports from Redshift Data
- Implementing Real-Time Data Analysis with BI Tools
- Use Cases: Analyzing Sales, Marketing, and Operational Data
Module 10: Monitoring and Managing Redshift Clusters
- Monitoring Cluster Health and Performance Metrics
- Scaling Redshift Clusters Up and Down
- Setting Up Alerts and Notifications for Cluster Health
- Best Practices for Maintenance and Upgrades
Module 11: Advanced Redshift Features and Use Cases
- Implementing Redshift Spectrum for External Data Analysis
- Redshift Materialized Views for Query Optimization
- Real-Time Analytics and Data Lakes in Redshift
- Case Studies: Industry Applications of Amazon Redshift